Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(20): 6299-6313, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642716

RESUMO

The application of clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) technology in the genetic modification of Yarrowia lipolytica is challenged by low efficiency and low throughput. Here, a highly efficient CRISPR-iCas9 (with D147Y and P411T mutants) genetic manipulation tool was established for Y. lipolytica, which was further utilized to integrate carotene synthetic key genes and significantly improve the target product yield. First, CRISPR-iCas9 could shorten the time of genetic modification and enable the rapid knockout of nonsense suppressors. iCas9 can lead to more than 98% knockout efficiency for NHEJ-mediated repair after optimal target disruption of a single gene, 100% knockout efficiency for a single gene-guided version, and more than 80% knockout efficiency for multiple genes simultaneously in Y. lipolytica. Subsequently, this technology allowed for rapid one-step integration of large fragments (up to 9902-bp) of genes into chromosomes. Finally, YL-ABTG and YL-ABTG2Z were further constructed through CRISPR-iCas9 integration of key genes in a one-step process, resulting in a maximum ß-carotene and zeaxanthin content of 3.12 mg/g and 2.33 mg/g dry cell weight, respectively. Therefore, CRISPR-iCas9 technology provides a feasible approach to genetic modification for efficient biosynthesis of biological compounds in Y. lipolytica. KEY POINTS: • iCas9 with D147Y and P411T mutants improved the CRISPR efficiency in Y. lipolytica. • CRISPR-iCas9 achieved efficient gene knockout and integration in Y. lipolytica. • CRISPR-iCas9 rapidly modified Y. lipolytica for carotenoid bioproduction.


Assuntos
Sistemas CRISPR-Cas , Yarrowia , Carotenoides , Yarrowia/genética , Edição de Genes/métodos , beta Caroteno
2.
Appl Microbiol Biotechnol ; 104(16): 7165-7175, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32592029

RESUMO

Sterols attract increasing attention due to their important bioactivities. The oleaginous yeast Yarrowia lipolytica has large lipid droplets, which provide storage for the accumulated steroid compounds. In this study, we have successfully constructed a campesterol biosynthetic pathway by modifying the synthetic pathway of ergosterol in Y. lipolytica with different capacity of lipid synthesis. The results showed that the maximal campesterol production was produced in the engineered strain YL-D+M-E-, as the optimal lipid content. Furthermore, we found that campesterol mainly exists in the lipid droplets. The campesterol production was further accumulated through the overexpression of two copies of dhcr7. Finally, the maximal campesterol production of 837 mg/L was obtained using a 5-L bioreactor in the engineered YL-D+D+M-E-, exhibiting a 3.7-fold increase compared with the initial strain YL-D+E-. Our results demonstrate that the proper promotion of lipid content plays an important role in campesterol biosynthesis in Y. lipolytica, and what we found provides an effective strategy for the production of hydrophobic compounds.Key Points• Campesterol was biosynthesized by deleting erg5 and introducing heterologous dhcr7.• Campesterol production elevated via promotion of lipid content.• Campesterol was mainly found in lipid droplets.• Promotion of lipid content is an effective strategy to produce hydrophobic compounds.


Assuntos
Colesterol/análogos & derivados , Lipídeos/análise , Engenharia Metabólica/métodos , Fitosteróis/biossíntese , Yarrowia/química , Reatores Biológicos , Vias Biossintéticas , Colesterol/biossíntese , Metabolismo dos Lipídeos/genética , Yarrowia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...